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On Computing Some Extremal Periodic 
Positive-Definite Functions 

By R. L. Page* 

Abstract. This paper is concerned with maximizing the square integral over certain 
classes of periodic positive-definite functions. The question arose at Jet Propulsion 
Laboratory in connection with maximizing the average power of the received signal in 
radar exploration of the planets. We present computational evidence that the maximizing 
function exists and, in most but not all cases, is unique. Upper and lower bounds for the 
maximum square integral are computed, and formulas are conjectured for the maximizing 
functions in several cases. 

1. Introduction. Let C1 be the set of periodic, real-valued functions on the real 
line which are continuous, have period 27r and satisfy 

(1.1) A(x) is positive definite; i.e., A(x) = po cos nx where IVn, Pn > 0; 
(1.2) A(x) = 0, 6 _ Ix < or; 
(1.3) A(0) = 1. 

Let Da = max {J I A(x)2 dx: A E C, }. 
It is easy to show, by integrating over the domain 0 < x < 6 the inequality 

det I A(xi - xi)H ? 0 with xi = 0, X2 = X, X3 = 6, that Da < 6. It is also true that 
Da > 2 6. One can see this by computing the square integral of the ma-function 

A(x) = (1 - Ix mod(-ir, 7r]1/3)+. 

A better lower bound is computed in a paper [3] by Garsia, Rodemich and Rumsey, 
in which the corresponding problem for nonperiodic functions on the real line is 
solved. They show that there is a function A maximizing f', IA(x)l2 dx where the 
maximum ranges over the class 5a of continuous, positive-definite functions on the 
real line which vanish outside the interval [-6, 6] and take the value one at zero. 
Of course, for any value of 6 < 7r, the class 5Ys can be embedded in C1 merely by 
constructing a periodic version of each function in OFT. For any function A in 5:, 
the Fourier integral f j1 A(x)e-ixu dx is nonnegative for all real values of u. This means 
that the corresponding periodic function A*(x) = A(x mod(-ir, ir]) must be in 
e0, since, in en, we only require that the Fourier integral be nonnegative for integer 
values of u. Therefore, the maximum square integral in the class 5YI, which Garsia, 
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et al. [3, p. 833] showed to be .686981293033114600949413... X 6, must be a lower 
bound on D,. One would like to compute better bounds for Da and, perhaps, find 
a formula for the maximizing function, if one exists. 

As stated, the problem is computationally intractable. A feasible computational 
approach is to consider an analogous class of discrete functions. 

Given two integers N and A (A _ N/2), let ((N, A) be the set of periodic (period 
27r) real-valued functions, a, defined on the Nth roots of unity, that is the set 
{27rk/N: k = 0, i1, i2, ... }, satisfying 

(1.4) a is positive-definite, 
(1.5) a(x) = 0 for 27r(A + 1)/N ? jxj < r, 
(1.6) a(O) = 1. 
Let 

B(N, A) = max{(27r/N) I, a(2irk/N)2: a C (i(N, A)}. 

The sum here, and elsewhere in this paper, is taken over any set of N consecutive 
values of the integer k. Any such set gives the same sum because of the periodicity 
of the functions involved. We use the normalization 2ir/N here to make the measure 
of the roots of unity group the same as the measure of the circle group over which 
the class Ca is defined. Thus, B(N, A) is in units comparable to those of D,. 

If A E en, then the a(N, A)-function produced by sampling A at the mesh points 
2irk/N, k = 0, i1, i2, .. , must be in a(N, A) as long as 6 ? 2ir(A + 1)/N. 
Furthermore, it can be shown, using a discrete version of the Poisson summation 
formula [6, p. 68], that 

(27r/N) I, A(27rk/N) f A(x) dx. 

Therefore, Da _ B(N, A) whenever 6 ? 2ir(A + 1)/N. 
Conversely, given any function a E G(N, A), one can produce a function A E en, 

6 = 27r(A + 1)/N, by taking A(27rk/N) = a(2irk/N) for all integers k, and linear in 
between those mesh points. That is, let 

A(x) = (1 - X)a(27rk/N) + Xa(27r(k + 1)/N), 

where 

27rk/N ? x ? 27r(k + 1)/N and X = N(x - 2Irk/N)/2ir. 

A straightforward integration shows that the Fourier coefficients of A are positive 
and that 

A(X)2 dx 

(1.7) 6 

= (27r/ N)[2 I, a(2irk/ N)2 + 3 E a(27r(k - 1)/ N)a(27rk/ N)]. 

If we let 6P2(N, A) denote the class of functions in C2 (A+1 ) /N which are linear 
between the points { 27rk/N: k = 0, i 1, i2, * * }, and let O(N, A) denote the maximal 
square integral in that class, then Da > O(N, A) whenever 6 > 27r(A + 1)/N. Thus, 
we have upper and lower bounds on Da which depend on functions determined by a 
finite set of numbers. The maximal functions in the classes a(N, A) and 642(N, A) 
can be computed using an algorithm described in Section 2. 
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2. Computing the Maximal Functions in (A(N, A) and GP2(N, A). The prob- 
lem of finding the maximal function in ((N, A) may be stated as follows: 

maximize E a(2irk/N)2 

subject to the constraints (1.4), (1.5), (1.6) of Section 1. 
Let {pI be the Fourier transform of a; that is, 

An = (2ir/N) A, a(2irk/N) exp (-27rikn/N). 

Then, the requirement that the function a be real-valued is equivalent to the require- 
ment that pI, = p-, for all integers n. Furthermore, by the Fourier inversion formula, 
conditions (1.4), (1.5), and (1.6) of Section 1 are equivalent to the following constraints 
on the sequence pI: 

(2.1) n >_ 0 for all integers n, 
N-1 

(2.2) (1/27r) > pa, exp (27rink/N) = 0, -A ?! k < A, 
n=O 

N-1 

(2.3) (1/2ir) E pn = 1. 
n=O 

Using Parseval's identity and the symmetry of {Pn} we can restate the problem of 
finding the maximal function in G(N, A) as follows: 

Subject to the constraints 

(2.4) Po _> ? Pi -> ?,0 , PM > , M= [NI2], 

M 

(2.5) po + 2 Ad Pn cos (27rnk/N) =0, k =A + 1, A + 2, ,M, 
n=1 

M 

(2.6) po + 2 Zp n = 2ir, 
n=1 

maximize the sum 
M 

(2.7) 2o + 2 E n 
n=1 

Since the constraints are linear, they describe the surface of a polyhedron in 
(M + 1)-dimensional Euclidean space. The function we are trying to maximize on this 
surface has the property that, on any line segment, it assumes its maximum on one 
of the endpoints. (The square root of the function is a norm; the property follows 
from the triangle inequality.) Hence, on a polyhedron, it must assume its maximum 
on a vertex. The fundamental theorem of linear programming [2, p. 5] says that these 
vertices are the vectors (po, ... , PM) in the polyhedron which have at least A zero- 
valued coordinates. It turns out that specifying A zero-valued coordinates in a vector 
(Pow ... *, PM) in the polyhedron described by (2.4), (2.5), and (2.6) completely deter- 
mines the vector. 

One can see this by considering the rational function 
A 

p(z) = (27r/N) E a(27rk/N)zk 
k=-A 
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where a is the function in (G(N, A) whose Fourier coefficients are Po, **, PM. Since 
a(2irk/N) = a(- 2rk/N), p must be real-valued on the unit circle and symmetric 
in the sense that p(e"x) = p(e-x). In addition, since p(e2' 7k/N ) = Pk, k = 0, 1, * * *, M, 
p must be nonnegative at each of the roots of unity and take the value zero at 2A of 
them. All the roots are simple because the degree of p indicates that it has only 2A 
roots. (The only exception to this is the case in which roots occur at +1 or - 1; 
these must be double roots and the number of distinct roots of p is diminished.) The 
rational function p is determined, up to a constant factor, by its 2A roots. Thus, 
(Po, ... PM) is determined as soon as one chooses A of its coordinates to be zero. 

Actually, we get a little more out of this argument: The zero coordinates of 
(Pod pi, ... * PM) must occur in adjacent pairs. This is so because p(e"x) must change 
sign at each of its simple zeroes, yet must remain positive at all the roots of unity. 
Therefore, if N = 2M is even and A is odd, the set of zero coordinates of 
(Pow ... , PM) can be written as { k0, k1, k, + 1, k2, Ik2 + 1, ... , k(Ae1)/2, k(Ae1)/2 + 1 } 
where ko = 0 or ko = M and 1 < ki < M - 2 for 1 < j _ (A - 1)/2. Similar 
statements can be made for the other possible values of N and A. 

To compute the maximal function a in (G(N, A), one needs only to compute the 
sum (2.7) for those vectors (Po, ... , PM) in the polyhedron determined by placing 
A zeroes in adjacent pairs of coordinates. An elementary computation shows that 

A 

=, const II 4 sin [r(n - m1)/N] sin [r(n + mi)/N], 
ill 

where {mI : 1 j ? A } is the set of zeroes in the coordinates of the vector 
(PoX ... PM). The value of const is determined by (2.6). The number of polyhedron 
vertices which must be searched is the binomial coefficient C[N/2]-[A&/2], [A/2]. For 
values of N smaller than 50, the computation of the maximal element in G(N, A) can 
be made in less than a minute on a CDC 3600 computer. 

One can compute the maximal element in the class 6P2(N, A) by the same pro- 
cedure, replacing the function to be maximized by 

(2 . 8 ) ~~~2 + 2 (2 +1 27rn) (2.8) PO + 2 n + Ib 

This is so because a straightforward computation shows that if A E SP4C(N, A) and 
{Pn} is the Fourier transform of the (G(N, A)-function a such that a(2irk/N) = 

A(27rk/N), then the integral fla A(x)2 dx is given by (2.8). 

3. Results. The above algorithm was applied for a great many different values 
of N and A. In every case, the extremal function AN A in the class P4(N, A) turned 
out to be unique and symmetric decreasing and there was an extremal function aNon 

in the class a(N, A) such that AN (27rn/N) = aN (2irn/N). The extremal function 
in G(N, A) is not always unique because, when N is even, {(-_ )n } is a positive- 
definite sequence of period N. Hence, if a is maximal in a(N, A), then so is a*, where 
a*(27rn/N) = (-_ )na(27rn/N). However, nonuniqueness, in all cases computed, 
only occurred in this way. 

In order to plot a graph of Da, we computed B(N, A) and O(N, A) for one hundred 
different values of 6 = 2ir(A + 1)/N. Since we know that for 6 of this form, B(N, A) > 
Da > O(N, A), we took (B(N, A) + O(N, A))/2 as an estimate of D a. The difference 
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THE EXTREMAL CONSTANTS 
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FIGURE 1 

in the bounds on Da ranged between 1.6 percent and .01 percent of the estimated size 
of D a. The difference tended to get smaller as 6 got larger possibly because the number 
of nonzero mesh points of the extremal sequences was larger for large 6, thus making 
the sequence a better approximation to the extremal function in ea. A graph of the 
computed approximations to Da appears in Fig. 1. 

In the same manner, we plotted Da/6 and the integral of the extremal function, 
which we denote by Is. It is interesting that the value of Is seems to be independent 
of the manner in which a = 27r(A + 1)/N is represented. That is, as long as the ratio 
(A + 1)/N remains the same, the extremal function in the class GC(N, A) has the 
same integral. 

It appears that Ih is discontinuous and Da/6 is a sequence of humps. The end- 
points of these humps correspond to the discontinuities in Is. A possible explanation 
for this is that, at the points of discontinuity in Is, the extremal function is not unique. 
This would give (at least) two possible values for Is at these points. 

This explanation fits with the information given by the graphs of the extremal 
functions in the classes 6S(N, A). For any particular - 2w(A + 1)/N, the extremal 
function in 6ZC(N, A) takes on a characteristic shape, even for small values of N. 
It seems reasonable to consider its graph to be a reasonably accurate picture of the 
shape of an extremal function in the class e, , 8 = 27r(A + 1)/N. For convenience, 
we will call any such extremal function As. There appears to be some consistency 
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TWO CHARACTERISTICS TYPES 
OF EXTREMAL FUNCTIONS 
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FIGURE 2 

in the behavior of As in the intervals between the points of discontinuity of Is. As 
8 approaches a point of discontinuity of Ih from the left, A takes on a bell shape. 
When 8 approaches such a point from the right, A, takes on a ski jump shape, as if 
the bell were reflected through the line from its top to its base. This phenomenon is 
illustrated in Fig. 2. 

If the graphs of A, are all decreasing, which appears to be the case, then one can 
take a limit of the functions A 5 as 8 approaches a point of discontinuity of Is through 
some sequence of values. Suppose 8fn J,, 8o and Awn An A(r) pointwise, where 80 is a 
point of discontinuity of Is. Then, A or) EE (c and 

rr ro 
D8 J l IA(r)(X)12 dx = uIr J IAb.(x)I2 dx = lim Dan > Da.. 

-7r n-u -o r n-uoo 

Thus, A (r) is an extremal function in eC,. 
Note that the existence of such a limit implies that D 5 is a right-continuous func- 

tion of 8. Suppose Da is also left-continuous and suppose an t 80 and A - A() 
pointwise. Then A(') C Ca,. 

ret O~~~~~r 
D8o >- j IA(~(x)12 dx = uIr J f 1a (x)I2 dx = lim Dan = D8. 

TO nb-co 7 net+o 

Thus, A(') is also an extremal function in the class e . 
The two extremal functions Ai r) and A(") should be different if the shape of the 
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piecewise linear functions as 8 nears (% is reasonably close to the shape of A 5. In 
particular, A"' should have the bell shape and A Ir) should have the ski jump shape. 

Looking at the computational results, one notices an interesting pattern which 
makes it possible to guess the extremal function for values of 8 which are rational 
multiples of ir. If such a 8 is expressed in the form 8 = 27r(A + 1)/N, with N as small 
as possible, then the zeroes of the Fourier transform of the extremal function in 
6NC(N', A'), where A' and N' satisfy (A' + 1)/N' = (A + 1)/N, seem to have a repeated 
pattern in blocks of size N. 

It is tempting to conjecture, from the observation on the periodicity of the zeroes 
of the Fourier transform, that if 8 is a rational multiple of 27r, say 8 = 27rp/q where 
p and q are integers with no common divisor, then the zeroes of the Fourier transform 
of the extremal function in e C must occur at the integers and must be periodic in the 
sense that if n > 0 is a zero, then so is n + q. 

In any case, by the Hadamard factorization theorem [1], the Fourier transform 

5'As(z) = A(x)etzx dx 
can be written in the form ea + b JJk [1- (z/nk)2] where the nk are the zeroes of 
the entire function 5:A,. 

Since 5:Ab(x) = 5:A5(-x), it must be that a = 0. Therefore, 

5'Ab(z) = const II [1 -(z/lnk)2]. 
ke1 

A theorem due to N. Wiener [5, p. 80] implies that 1A, is integrable over the real 
line, so that, at least in theory, one can invert the Fourier transform 5:A, to find A8. 

When 8 = 2ir(A + 1)/N and N is not too large, one can guess the pattern of 
zeroes of 5:A, by making computations using the algorithm described in the first 
part of this section. For example, in the case a = ir/2, the zero set of I:A/2 appears 
to be { ?i4k, ?(4k + 1): 1 < k < o} . The canonical product with these zeroes is 

5,/2(Z) = const [sin(rz/4)/z]/[r(5/4 + z/4)r(5/4 - z/4)]. 

Fortunately, it is possible to explicitly invert this Fourier transform [4, p. 7]. One 
finds that 

A1,2(x) = const x * a(x), lxi < 7 

(the symbol * denotes convolution), where 

x = 1 on [-ir/4, 7r/4], 

= 0 elsewhere, 

and 

a(t) = X(t)(cos 2t)"/2. 

The square integral of this function, to fourteen decimal places, is 1.12504202380751. 
By computing the extremal elements in the classes GP2(40, 9) and a(40, 9), one finds 
that 1.12213 < Dr,2 < 1.12785. Thus, the square integral falls in the proper range. 
A graph of the function A,/2 is bell shaped, as one would expect from solutions to the 
discrete problem with 8 near 7r/2. 
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Even though this evidence tends to verify the conjecture about the periodicity 
of the zeroes for the case 8 = ir/2, the author has an argument (not presented here) 
which shows that the conjecture cannot be true for some (very small) values of 8. 

Other cases, where the maximal function As seems to have the form A, = 
const x * a 5 where x, is the indicator function for the interval [-8, 8] and a, (t) = 
(cos(7r/8)t)/7x,(t), occur when 8 = 2r/n for n = 3, 4, 5, , 12 (but not when 
8 = 2wr/13). 

It may be worth noting that we can actually evaluate the constant involved when 
8 is of the form 8 = 27r/n. We require A,(O) = 1, hence 

const = 1 ab(t) dt = 1/5tYa(O). 
I-/2 

Since [5, p. 7] 

f eit8/[r(1 + 1/n + s/n)F(1 + 1/n - s/n)] ds = n2' 2,/827r1,(t)/r(1 + 2/n), 

we have 

const = n2 2/r(1 + 1/n)2 /r( + 2/n). 

4. The Complex Case. If we enlarge the class C8 to include complex-valued 
functions, which is equivalent to removing the restriction that the Fourier coefficients 
be symmetric about zero, one can use the same techniques to find approximations 
to the maximal functions. All the arguments are essentially the same. (However, the 
fundamental theorem of linear programming must be slightly extended.) 

Again, the cases 8 = 2wr/n turn out to be particularly nice. When 3 < n < 12, the 
Fourier transform of the maximal functions appears to have its zeroes at the points 
nk, nk + 1 where k = ? 1, i2, * . . It is easily verified that the periodic (period 2r), 
conjugate symmetric function A, such that 

A8(x)= (ex -ei8)/(I -e"8), 0 _ x _ 

= . < x < 7r, 

is positive-definite when 8 = 2r/n, and its Fourier transform has its zeroes at the 
points nk, nk + 1, k = ?1, ?2, * . A straightforward computation shows that 

(4.1) J_ A^(x)I2 dx = 2(3 - sin a)/(1 - cos 5). 

For 8 = r/2, the integral (4.1) is r - 2, which fits with computational data giving 
upper and lower bounds on the maximum in this case. 

5. Conclusion. The problems discussed in this paper are easy to state, yet very 
hard to solve analytically. Nevertheless, some analysis leads to a feasible computa- 
tional approach. Results from the computations lead to some nice formulae for 
functions which, with some confidence, one can conjecture to be solutions. 
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